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Anti-periodic boundary value problems
for Caputo-Fabrizio fractional
impulsive differential equations

Mohammed Benyoub, Kacem Belghaba

Abstract. In this paper, we shall discuss the existence and uniqueness
of solutions for a nonlinear anti-periodic boundary value problem for
fractional impulsive differential equations involving a Caputo-Fabrizio
fractional derivative of order r ∈ (0, 1). Our results are based on some
fixed point theorem, nonlinear alternative of Leray-Schauder type and
coupled lower and upper solutions.

1. Introduction

Fractional calculus and impulsive fractional differential equations arise in
many engineering and scientific disciplines as the mathematical modeling
of systems and processes in the fields of physics, chemistry, aerodynamics,
electrodynamics of complex medium, viscoelasticity, heat conduction, elec-
tricity mechanics, control theory, for more details on this topics see, for
instance,[1, 7, 9, 12, 15, 21, 26, 34] and the references therein.

In recent times, a new fractional differential equations having a kernel
with exponential decay has been introduced by Caputo and Fabrizio [17].

Anti-periodic boundary value problems have been studied extensively in
the last ten years, for differential equations, a Massera’s type criterion is pre-
sented in [18]. Also anti-periodic boundary value problems accur in mathe-
matical modeling of a variety of physical processes and have recently received
considerable attention for details, see [3, 4, 6, 8, 16]. The monotone iterative
method is based on coupled lower and upper solutions is an effective and
flexible mechanism for details, see [33].
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Bekada et al. [14] discussed the following boundary value problem for
Caputo-Fabrizio random fractional equations:{ (

CFDα
0 u
)

(t, w) = f(t;u(t, w), w), t ∈ I := [0, T ], w ∈ Ω,

au(0, w) + bu(T,w) = c(w), w ∈ Ω,

where T > 0, f : I × E × Ω → E is a given function, a, b ∈ R, c : Ω → E
is the Caputo-Fabrizio fractional derivative of order α ∈ (0, 1) and Ω is the
sample space in a probability space (Ω, F ) and E is a real (or complex) Ba-
nach space. The anti-periodic boundary value problem for Caputo-Fabrizio
random fractional differential equations is a partial case with a = b = 1 and
c(w) = 0. In this work we consider the following nonlinear anti-periodic
problem (short BVP) with non-monotone term:

(1) CFDr
0u(t) = f(t, u(t)), a.e. t ∈ I := [0, T ],

(2) ∆u(tk) = Ik(uk(tk), k = 1, 2, . . . ,m,

(3) u(0) = −u(T ),

where T > 0, CFDr
0 is the standard Caputo-Fabrizio fractional derivative

of order r ∈ (0, 1), Ik ∈ C(I,R), 0 = t0 < t1 < · · · < tm < tm+1 = T ,
∆u(tk) = u(t+k )−u(t−k ) and f : I×R→ R map satisfying some assumptions.
In this paper, we shall discuss existence results of the solution of the anti-
periodic problem (1)–(3) by using monotone iterative method.

This paper is organized in the following way. In the next section we
recall briefly some notion of fractional calculus and theory of operators.
The existence results are given in Section 3. In Section 4, using coupled
upper and lower solutions. Finally, a conlusion is given in Section 5.

2. Preliminaries

In this section, we introduce the notations, definitions, and preliminary
facts that will be used in the rest of this paper.

Let C(I) be the Banach space of all continuous functions from I with the
supremum norm defined by

‖u‖ = sup {|u(t)|, t ∈ [0, T ]} .

By L1(I), we denote the space of Lebesgue integrable functions, v : I → R
with the norm

‖v‖1 =

∫ T

0
|v(t)|dt.

By AC(I) = C([0, T ],R) is the space of coninuous absolutely functions.
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Definition 1. Let f is said to be L1-Carathéodory

(i) t→ f(t, u) is Lebesgue measurable for each u ∈ R,

(ii) u→ f(t, u) is continuous for almost all t ∈ [0, T ],

(iii) for each R > 0, there exists ϕ ∈ L1([0, T ],R+) such that

‖f(t, u)‖ ≤ ϕR(t),

for all ‖u‖∞ ≤ R and for a.e.t ∈ [0, T ].

Definition 2 ([17, 27]). The Caputo-Fabrizio fractional integral of order
0 < r < 1 for a function h ∈ L1(I) is defined by

(4) CF Irh(τ) =
2(1− r)

M(α)(2− r)
h(τ) +

2r

M(r)(2− r)

∫ τ

0
h(s)ds, τ ≥ 0,

where M(r) is normalization constant depending on r.

Definition 3 ([17]). The Caputo-Fabrizio fractional derivative for a function
h ∈ AC(I) of order 0 < r < 1, is defined by for τ ∈ I,

(5) CFDrh(τ) =
(2− r)M(r)

2(1− r)

∫ τ

0
exp

(
− r

1− r
(τ − s)

)
h′(s)ds.

Note that (CFDr)(h) = 0 if only if h is a constant function.

Lemma 1. Let u ∈ AC(I), and let λ > 0, the solution of the Cauchy
problem CFDru(t) + λu(t) = h(t) with initial boundary condition defined by
u(0) = u0, is given by

(6)
u(t) =

u0
1 + λ(1− r)

exp

(
−λrt

1 + λ(1− r)

)
+

∫ t

0
exp

(
−λr(t− s)

1 + λ(1− r)

)
h(s)ds.

Proof. We first apply the Laplace transform, thus it follows that

(7) L(CFDru(t)) = −λL(u(t)) +H(s),

such that H(s) = L(h)(s), on other hand

sL{u(t)}(s)− u0
s+ r(1− s)

= −λL(u(t)),

sL{u(t)}(s)− u0 = −sλL(u(t))− r(1− s)λL(u(t)),

so

[s(1 + λ(1− r)) + λr]L{u(t)}(s) = u0,[
s+ λr(λ(1− r))−1

]
L{u(t)}(s) = u0(1 + λ(1− r))−1.
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Hence

Lp(u(t)) =
u0(1 + λ(1− r))−1

s+ λr(λ(1− r))−1
.

Then by (7) we have

Lp =
u0(1 + λ(1− r))−1

s+ λr(λ(1− r))−1
+

H(s)

s+ λr(λ(1− r))−1
.

Applying the inverse of Laplace transform on the previous equation, we
obtain (6). �

Lemma 2. Let h ∈ L1(I) consider the boundary value problem

(8)

{
(CFDr

0u)(t) + λu(t) = h(t), a.e. t ∈ I,
u(0) = −u(T ).

Then the solution of (8) given by

(9) u(t) =

∫ T

0
g(t, s)h(s)ds,

where g is the Green’s function

g(t, s) =



exp
(

λr
1+λ(1−r)(T − t+ s)

)
exp

(
λr

1+λ(1−r)T
)

+ 1
, 0 ≤ s ≤ t ≤ T,

− exp
(

λr
1+λ(1−r)(s− t)

)
exp

(
λr

1+λ(1−r)T
)

+ 1
, 0 ≤ t < s ≤ T.

Definition 4 ([29]). The set S ⊂ AC(I,Rn) is said to be quasiequicontin-
uous in I if for any ε > 0 there exists a δ > 0, such that if u ∈ S, k ∈ Z,
τ1, τ2 ∈ (tk−1, tk) ∩ I and |τ1 − τ2| < δ, then ‖u(τ1)− u(τ2)‖ < ε.

Lemma 3. The set S ⊂ AC(I,Rn) is relatively compact if and only if

(i) S is bounded that is ‖u‖ ≤ c for each u ∈ S and some c > 0,

(ii) S is quasiequicontinuous in I.

Theorem 1. Let V be a complete convex subset of a locally convex Haus-
dorff linear topological space E and U an open subset of V with p ∈ U . In
addition let N : U → V be a continuous, compact map. Then either:

(A1) N has a fixed point in U , or

(A2) there is a u ∈ ∂U and µ ∈ (0, 1), withu = µN(u) + (1− µ)p.
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3. Existence Results

Lemma 4. Let h : L1(I) consider the problem

(10)


(CFDr

0u)(t) + λu(t) = h(t), a.e. t ∈ I,
∆u(tk) = Ik(u(tk)), k = 1, 2, . . . ,m,

u(0) = −u(T ).

Then the solution of (10) given by

(11) u(t) =

∫ T

0
g(t, s)h(s) +

m∑
k=1

g(t, tk)Ik(u(tk)).

Proof. Rewriting (9), if t ∈ [0, t1) then

u(t) =

∫ T

0
g(t, s)h(s)ds,

then if t ∈ [t1, t2), we obtain

u(t) = u(t+1 ) +

∫ T

t1

g(t, s)h(s)ds

= g(t, t1)I1(u(t1) + g(t, t1)u(t1) +

∫ T

t1

g(t, s)h(s)ds

= g(t, t1)I1(u(t1) +

∫ t1

0
g(t, t1)g(t1, s)h(s)ds+

∫ T

t1

g(t, s)h(s)ds

= g(t, t1)I1(u(t1) +

∫ T

0
g(t, s)h(s)ds.

If t ∈ [t2, t3), then from (10) we get

u(t) = u(t+2 ) +

∫ T

0
g(t, s)h(s)ds

= g(t, t2)I2(u(t2)) + g(t, t2)u(t2) +

∫ T

t2

g(t, s)h(s)ds

= g(t, t2)I2(u(t2) + g(t, t2)g(t2, t1)I1(u(t1) +

∫ T

0
g(t, s)h(s)ds

= g(t, t1)I1(u(t1)) + g(t, t2)I2(u(t2)) +

∫ T

0
g(t, s)h(s)ds.

If t ∈ [tk, tk+), then again from (9), we get

u(t) =

∫ T

0
g(t, s)h(s) +

m∑
k=1

g(t, tk)Ik(u(tk)). �
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Let λ > 0, F : I × R → R a L1-Carathéodory function and consider the
problem

(12)


(CFDr

0u)(t) + λu(t) = F (t, u(t)), a.e. t ∈ I,
∆u(tk) = Ik(u(tk)), k = 1, 2, · · ·,m,
u(0) = −u(T ).

Evident if F (t, u) = f(t, u) + λu and u, is a solution to (12) then u is a
solution to (1)–(3). Furthermore, it is easy to show that solving (12) is
equivalent to finding a u ∈ AC(I) that satisfies u = Nu. Here N : AC(I)→
AC(I) is given by

(13) (Nu)(t) =

∫ T

0
g(t, s)F (s, u(s))ds+

m∑
k=1

g(t, tk)Ik(u(tk)).

Note that if F (t, u) = δ(t) problem (12) is linear and solavable for each
λ ∈ R and the solution is given by expression (13). Using a nonlinear
alternative of Leray-Schauder type we now establish existence principles for
(13).

Theorem 2. Suppose that there exist a continuous and nondecreasing func-
tion ψ : [0,∞)→ (0,∞) and a function q ∈ L1(I)

(H1) |F (t, u)| ≤ q(t)ψ(|s|), for a.e. t ∈ I and all s ∈ I.

(H2) Ik (k = 1, 2, . . . ,m) is continuous.

(H3) There exist bk ≥ 0, k = 1, 2, · · ·,m, such that

|Ik(u)| ≤ bk|u| and
m∑
k=1

bk < 1 + exp

(
−λr

1 + λ(1− r)
T

)
.

In addition, suppose that

(14) sup
c≥0

c

ψ(c)
> K =

‖q‖L1

1 + exp
(

−λr
1+λ(1−r)T

)
−

m∑
k=1

bk

.

Then (12) has at least one solution.

Proof. Consider the problem

(15)


(CFDα

0 u)(t) + λu(t) = µF (t, u(t)), a.e. t ∈ I,
∆u(tk) = µIk(u(tk)), k = 1, 2, . . . ,m,

u(0) = −u(T ).

It is easy to see that a function u is a solution to (15) if and only if

u = µNu.
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We show that N satisfies the assumptions of Theorem 2 by three steps.

Step 1. N is continuous. Let {un}n∈N be a sequence such that un → u in
AC(I). Then, for each t ∈ I we have

|(Nun)(t)− (Nu)(t)| ≤
∫ T

0
|g(t, s)||F (s, un(s))− F (s, u(s))|ds

+

m∑
k=1

|g(t, tk)||Ik(un(tk))− Ik(u(tk))|

≤ 1

1 + exp
(

−λr
1+λ(1−r)T

)‖F (s, un(s))− F (s, u(s))‖L1

+
1

1 + exp
(

−λr
1+λ(1−r)T

) m∑
k=1

|Ik(un(tk))− Ik(u(tk))|.

Since un → u is n→∞ and F is of L1-Carathéodory type, then we get

|N(un)−N(u)| −→ 0 as n −→∞.

Hence, the operator N is continuous.

Step 2. N bounded sets into bounded sets.
Indeed, for given R > 0, if u ∈ BR = {u ∈ AC(I) : ‖u‖ ≤ R} thus, we have

|(Nun)(t)− (Nu)(t)| ≤
∫ T

0
|g(t, s)||F (s, u(s))|ds+

m∑
k=1

|g(t, tk)||Ik(u(tk))|

≤ 1

1 + exp
(

−λr
1+λ(1−r)T

) [‖q‖L1ψ(‖u‖) +

m∑
k=1

bkR

]
:= l.

Step 3. N bounded sets into quasiequicontinuous sets.
Let τ1, τ2 ∈ (tk−1, tk]∩ I k = 1, 2, . . . ,m+ 1, τ1 < τ2, u ∈ Br, then, we have

|(Nu)(τ2)− (Nu)(τ1)| ≤
∫ τ1

0
|g(τ2, s)− g(τ1, s)||F (s, u(s))|ds

+

∫ τ1

τ2

|g(τ2, s)− g(τ1, s)||F (s, u(s))|ds

+

∫ τ2

τ1

(|g(τ2, s) + g(τ1, s)|)|F (s, u(s))|ds

+

m∑
k=1

|g(τ2, tk)− g(τ1, tk)||Ik(u(tk)|.
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From the definition of the function g(t, s) and that F is L1-Carathéodory it
follows that N(BR) is quasiequicontinuous.
By (14) there exists M > 0 independent of µ, such that ‖u‖ 6= M with

(16)
M

ψ(M)
> K.

For µ ∈ (0, 1) let u ∈ AC(I) be any solution of (15). Then, for t ∈ I we
have

u(t) = µ

∫ T

0
g(t, s)F (s, u(s))ds+ µ

m∑
k=1

g(t, tk)Ik(u(tk),

and so

(Nu)(t) ≤
∫ T

0
|g(t, s)|q(s)ψ(|u(s)|)ds+

m∑
k=1

|g(t, tk)|bk|u(tk))|

≤ 1

1 + exp
(

−λr
1+λ(1−r)T

) [‖q‖L1ψ(‖u‖) +
m∑
k=1

bk‖u‖

]
.

Thus, ‖u‖ ≤ Kψ(‖u‖) and so, ‖u‖ 6= M from, now the proof is complete
from Theorem 2, deduce that (12) has a solution in AC(I). �

4. Coupled upper and lower solutions

In the space AC(I) we also consider the usual pointwise parcial ordering.
In such a case we define the interval

[β, α] = {u ∈ AC(I) : β ≤ u ≤ α}.

Definition of lower and upper solution is presented.

Definition 5. A function α(t) ∈ AC(I) is called a lower solution of (1)–(3)
if it satisfies

(17)


(CFDr

0α)(t) ≤ f(t, α(t)) a.e. t ∈ I t 6= tk,

∆α(t) ≤ Ik(α(tk)), k = 1, 2, . . . ,m,

β(0) ≤ −α(T ),

Definition 6. A function β(t) ∈ AC(I) is called a upper solution of (1)–(3)
if it satisfies

(18)


(CFDr

0β)(t) ≥ f(t, β(t)) a.e. t ∈ I t 6= tk,

∆β(tk) ≥ Ik(β(tk)), k = 1, 2, . . . ,m,

α(0) ≥ −β(T ).

Note that g is not of constant sign on I × I. Let g = g+ − g− with

g+(t, s) = max{g(t, s), 0} and g− = max{−g(t, s), 0}
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and we can write the operator given in (10) as

(19) (Nu)(t) =

∫ T

0
g+(t, s)F (s, u(s))ds−

∫ T

0
g−(t, s)dsF (s, u(s))ds,

or equivalently as

(Nu)(t) =

∫ t

0

exp
(

λr
1+λ(1−r)(T − t+ s)

)
exp

(
λr

1+λ(1−r)T
)

+ 1
F (s, u(s))ds

−
∫ T

t

− exp
(

λr
1+λ(1−r)(s− t)

)
exp

(
λr

1+λ(1−r)T
)

+ 1
F (s, u(s))ds.

For η ∈ C(I), t ∈ I, we define

(N+η)(t) =

∫ T

0
g+(t, s)F (s, η(s))ds,

(N−η)(t) =

∫ T

0
g−(t, s)F (s, η(s))ds.

Note that N+ : AC(I)→ AC(I) and N− : AC(I)→ AC(I) are continu-
ous and completely continuous.

Definition 7. We say that functions α, β ∈ AC(I) are coupled lower and
upper solutions for the anti-periodic problem (1)–(3) if β(t) ≤ α(t) and

(20) β ≤ N+β −N−α

and

(21) α ≥ N+α−N−β.

Theorem 3. Let α, β ∈ AC(I) be a coupled lower and upper for (1)–(3).
Suppose that f satisfies for a.e. t ∈ I

(22) f(t, u)− f(t, v) + λ(u− v) ≥ 0, β(t) ≤ v ≤ u ≤ α(t),

and that Ik, k = 1, 2, · · ·,m, are nondecreasing. Then, there exist monotone
sequences {βn} and {αn} such that {βn} ↗ φ and {αn} ↘ ξ uniformly on
I and any solution to (1)–(3) such that u ∈ [β, α] satisfies u ∈ [φ, ξ].

Proof. Clearly, if functions α, β are coupled lower and upper solutions for
(1)–(3), then there are (20) and (21). In fact, by the definition of the lower
and upper solutions there exist function p(t) ≥ 0 such that

CFDr
0α(t) = f(t, α(t))− p(t), a.e. t ∈ I

and
CFDr

0β(t) = f(t, β(t)) + p(t), a.e. t ∈ I.



58 Anti-periodic boundary value for Caputo-Fabrizio fractional. . .

Then

β(t) =

∫ t

0

exp
(

λr
1+λ(1−r)(T − t+ s)

)
exp

(
λr

1+λ(1−r)T
)

+ 1

[
f(s, β(s)) + λβ(s) + p(s)

]
ds

+ g+(t, tk)Ik(β(tk)

−
∫ T

t

− exp
(

λr
1+λ(1−r)(s− t)

)
exp

(
λr

1+λ(1−r)T
)

+ 1

[
f(s, α(s)) + λα(s)− p(s)

]
ds

− g−(t, tk)Ik(α(tk)

≤ N+β(t)−N−α(t).

Similarly, there is
α ≥ N+α−N−β.

We define sequences {αn} and {βn} by α0 = α, β0 = β and for each n ≥ 1

(23)
βn = N+βn−1 −N−αn−1,
αn = N+αn−1 −N−βn−1.

In view that N+, N− are completely continuous and β ≤ βn ≤ αn ≤ α for
all n ≥ 0, we can deduce that {βn} converges to φ uniformly on I, and {αn}
converges to ξ uniformly on I. Now suppose that u is solution (1)–(3) and
u ∈ [β, α], we get for each n ≥ 0

βn ≤ u ≤ αn.

Thus, passing to the limit when n→∞ we obtain φ ≤ u ≤ ξ. �

Theorem 4. Let α, β ∈ AC(I) be a coupled lower and upper solutions for
(1)–(3), with following assumptions:

(H4) There exists constant M > 0 such that λ > 0 for a.e. t ∈ I

(24) f(t, u)− f(t, v) + λ(u− v) ≤M(u− v), β(t) ≤ v ≤ u ≤ α(t).

(H5) There exists constant L > 0 such that

(25) Ik(u)− Ik(v) ≤ L(u− v), β(t) ≤ v ≤ u ≤ α(t).

If

(26)
M(1 + λ(1− r))

[
1− exp

(
−λr

1+λ(1−r)T
)]

+mλrL

λr
[
1 + exp

(
−λr

1+λ(1−r)T
)] < 1,

then (1)–(3) has a unique solution u ∈ [β, α].



M. Benyoub, K. Belghaba 59

Proof. We pass to the limit in expression (23) to obtain that φ and ξ satisfy

φ = N+φ−N−ξ, ξ = N+ξ −N−φ.

We show that ξ = φ on consider

ξ(t)− φ(t) = (N+ξ)(t)− (N+φ)(t)− (N−ξ)(t) + (N−φ)(t).

Using conditions (24) and (25) we obtain

ξ(t)− φ(t) ≤
∫ T

0
M [g+(t, s) + g−(t, s)](ξ(s)− φ(s))ds

+ L
m∑
k=1

[g+(t, tk) + g−(t, tk)](ξ(s)− φ(s)).

Note that∫ T

0
[g+(t, s) + g−(t, s)]ds =

(1 + λ(1− r))
(

1− exp
(
− λr

1+λ(1−r)T
))

λr
(

1 + exp
(
− λr

1+λ(1−r)T
))

and
m∑
k=1

[g+(t, tk) + g−(t, tk)] ≤
mL

1 + exp
(
− λr

1+λ(1−r)T
) .

We obtain

‖ξ − φ‖ ≤
M(1 + λ(1− r))

[
1− exp

(
−λr

1+λ(1−r)T
)]

+mλrL

λr
[
1 + exp

(
−λr

1+λ(1−r)T
)] ‖ξ − φ‖.

Therefore, ξ = φ. �

5. Conclusion

This manuscript presents the existence and uniqueness of the solution
of considered anti-periodic boundary value problems for Caputo-Fabrizio
fractional impulsive differential equations. Further, we use the monotone
iterative method of coupled lower and upper solutions. It yields monotone
sequences of coupled lower and upper approximate solutions that converge
to the minimal and maximal solutions between the lower and upper solution
or upper and lower solutions. For future, we intended to search the existence
results for Caputo-Fabrizio fractional impulsive differential inclusions with
anti-periodic boundary conditions by using differential inequalities method.
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